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LARGE ELASTIC DEFORMATIONS OF ISOTROPIC MATERIALS
VIII. STRAIN DISTRIBUTION AROUND A HOLE IN A SHEET

By R. S. RIVLIN
Davy Faraday Laboratory of the Royal Institution
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British Rubber Producers’ Research Association
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The deformation produced by radial forces in a thin circular sheet of incompressible highly elastic
material, isotropic in its undeformed state, containing a central circular hole, is studied theoretically,
and results calculated on the basis of the theory are compared with those obtained experimentally
employing a vulcanized natural rubber compound as the highly elastic material.

1. INTRODUCTION

In earlier parts, a mathematical theory of the deformation of ideal highly elastic materials
which are incompressible and isotropic in their undeformed state has been formulated. The
elastic properties of the material are specified in terms of a stored-energy function W which
must be a function of two invariants of the strain /; and Z,. On the basis of this theory, the
forces necessary to produce certain simple types of deformation in such a highly elastic
material have been calculated without the assumption of any particular form for the
dependence of W on I, and I,. In other cases, it has been necessary, in order to pursue the
calculations to their conclusion, to assume a specific simple form for I given by

W= C\(f,—3)+Ca(L,—3), (1-1)
where C} and C, are physical constants. This form was first suggested by Mooney (1940) on
semi-empirical grounds, as being suitable for the description of the elastic properties of
rubber. It has already been pointed out (Rivlin 1949, and part VII) that this form is the
most general that can be taken by the stored-energy function if terms of third and higher
degree in the principal extensions are neglected; i.e. it is the analogue for incompressible
highly elastic materials of the form derived by Murnaghan (1937) for compressible highly
elastic materials.

In the present part we shall discuss the problem of the deformation produced in a thin
circular sheet of the highly elastic material, containing a central circular hole, when it is
stretched in a circularly symmetrical manner by radial forces lying in its plane and acting on
its periphery.
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The radial distribution of the displacement for various values of the extension ratio at the
hole is computed on the assumption that the stored-energy function W has the form (1-1).
It is found that this displacement distribution is not very sensitive to the value of C,/C;. The
results of the calculations are compared with measurements made on a test-piece of vulcanized
natural rubber, and good agreement is obtained for a value of C,/C; of about 0-1. Itis shown
further, by calculation, that for each state of deformation of the sheet, the value of Z, varies
only slightly with radius. This has the result that any slight dependence of dW/d1, on I,, such
as is indicated by the experimental results given in part VII, would not be reflected in
disagreement between the experimental results and those calculated on the basis of a stored-
energy function of the form (1-1), provided G,/C; is given an appropriate value for each
state of deformation of the sheet.

2. THE STRESS DISTRIBUTION ROUND A CIRGULAR HOLE

Consider a thin circular sheet of incompressible highly elastic material which is isotropic
in its undeformed state, of radius @, and uniform thickness %, containing at its centre a hole
of radius a. Let this be deformed by the application of radial surface tractions uniformly
distributed along its outer edge. Under the action of these forces the radius of the hole is
increased to Aa, say.

We choose as reference axes a cylindrical polar system (r, 4, z) having its pole at the centre
and its z-axis normal to the plane of the sheet. Then, it is evident from the symmetry of the
problem that a point of the material which is at (7, 6, z) in the undeformed state will move, in
the deformation, to (p, ¥, ), where § = ¢. Provided that the sheet is sufficiently thin for the
variation of the radial displacement over its thickness to be negligible, p is a function of
r only and { = A3z, where A; is also a function of 7 only. The material at each point of the
sheet is then in a state of pure strain. The principal axes of strain are in the radial, azimuthal
and normal directions at each point of the sheet and the extension ratios for these three
directions will be denoted by A, A, and A, respectively, where 1;, A, and A, are functions of
r only. We readily see from the geometry of the system that

q
and, since the material is incompressible so that 1, 2,4; = 1,
q
X =r[o(F). (2-2)

The normal components of the stress in the radial and azimuthal directions and in the
direction of the normal to the sheet will be denoted ¢, ,, t55 and #,, respectively. These are given

pp?
(Rivlin 1948, equations (6:3)) by
aw 10w .
bo o o= 2 MG B |+ (=1.23) (2:3)
where 5 =243+ and L =A72+A;2+A352% (2-4)

W is the stored-energy function for the material and is a function of J; and I,. p denotes an
arbitrary hydrostatic pressure. The tangential components of the stress are, from the
symmetry of the problem, zero.
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Since there are no surface tractions acting on the major surfaces of the sheet, we have
tee = 0, so that equations (2-3) yield

oW Wy |
by = 2(3—A3) (71—1"1‘1130—[2)
(2-5)
and fyy = 2(13—12) (%%H%%)'

Let 77 and T, be the resultants of the stresses ¢, , and £y, acting over the thickness of the sheet
and measured per unit length in the deformed sheet. Then, since in the deformed state the
thickness of the sheet at any point is 154,

7= 2y (5 —) (5 +357)
o1 o1, (2:6)
ow oW
— 22 (Y 22
and T, — 2k, (03— 23) (011 Gy )
The equations of equilibrium for the sheet become, since no body forces are acting,
d
g/;(pT]) =T (2:7)
the remaining two equations being automatically satisfied. This equation may be rewritten
d q
Z(bT) = Z Ty (2:8)

At the periphery of the hole, i.e. where r = q, t,, = 0. From the first of equations (2-5),
this yields A; = A3, which, with the incompressibility condition 4;1,4; = 1, gives

[Ailrmg = 3] = A7 (say)  and  [Ay],-, = A, (2:9)
Introducing this result into the second of equations (2-6) we obtain
I\[ (oW 10w
—op-Haz—3) | (22 o add .
T =2 () [ () +2 ) ) (210)
where, from (2-9) and (2-4),
(1] =242 and [f],., = 5+2 (2:11)

It should be noted that since ¢,, = £;, = 0 at the edge of the hole, the material of the sheet
there is in simple extension.

3. APPROXIMATE SOLUTIONS OF THE EQUATIONS

By Taylor’s theorem, we can express the value of p for any value of 7 thus:

p=5 L o-ar[5F] (3:1)

Successive approximations to p can be found by calculating the values of successive derivatives
of p when r = a. We have, from (2-9) and (2-1), p = Aa and dp/dr = 7%, so that

p=2Aa+ (r—a)d~? (3-2)

provides a first approximation to the solution of the problem. For the next approximation

we must calculate d%p/dr?.

Vol. 243. A. 39
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292 R. S. RIVLIN AND A. G. THOMAS ON LARGE ELASTIC
From equation (2-8), we obtain
dly 4
PP+ (T =o. (33)
When r = a, T} = 0, p = Aa and dp/dr = A1~} and T, is given by (2-10) so that
dT; 2k I\[ (oW 1 (M) ] )
@l e =a)lGr) ) L) S

Now, from the first of equations (2-6), we have

dly  .[1dA 2 dA, d/l) 1 d ((?W (9W) _
& “h\na tesa (40 G Tawawa i g1 (3:5)
ol, ' "? 01,
where 7] is given by the first of equations (2-6). Thus
dds\ (OW 1, 0W _
] G- (37 +2% )] (36)

In view of the incompressibility condition 4,4,4; = 1, we have

1d, 1dl, 1dl

Ndr Ld Nd % (37)

whence drl+ dr:l =1 :l (3-8)
d, 14

From (21) P2 £, (3-9)

so that %] = Zli (A=r=Q). (3-10)

From (8-8), (3-10), (3-6) and (3-4), we obtain

3, 2\ LW , 1
@ﬂ ’{UL) (1w aar)  (r—1—5)]
dr .- aw o[ IW ’
ol (o) +e(z) ] |

Now, since dA,/dr = p,,, we can readily obtain the second approximation to p from (3-1).
We can obtain a first approximation to the dependence of p on 7, in the neighbourhood of

the hole, which is somewhat more accurate than (3-2), in the following manner. Since
t,, = 0, when r = a, we have from the first of equations (2-5), (21) and (2-2)

pr = (7/p)*. (3:12)
This yields with the condition that p = Ada, when r = q,

(3-11)

p=rtta(li—1). (3-13)

For this result to be accurately applicable, we would require that ¢,, = 0 over its whole
range of applicability. It will, however, be approximately valid so long as t,, is small
compared with Z.
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The solution of the problem in the limiting case of infinitesimally small deformations can
readily be obtained from classical elasticity theory. This yields

IS

1= 1(—1) (1+3“2) (3-14)

The equations given in § 2 can, of course, be solved, with appropriate approximations, to give
the same result.

4. NUMERICAL SOLUTION OF THE PROBLEM

The problem may be readily solved numerically, if the form of W as a function of I, and

L, is known. Let us suppose that when r = 7', we know the values of 1, and A,. Then, we can

calculate their values for r = '+ Ar, where Ar is sufficiently small, in the following manner.
Equation (3-9) may be rewritten

dy 1

T

“2— (L —4y). (41)

A
Whence almrear = ol + 5 =)oy (4-2)

If the form of W as a function of 7, and 1, is known, we can calculate [7}],-, and [7}],-,. from
equations (2-6), A; being obtained from the relation ;4,45 = 1 and /; and I, from equations
(2-4). Equation (3-3) may be rewritten

ar;, 2

o 1T, (+3)
From (2‘-4) and (3:7) we see that

T P T
where A— aalpﬂ 213 a(?z g’; T IV; 3
and B— ’932@ (A2-+23) air s +A2A§%. .
Employing the relations (3-7) and (4-4) in (3-5) and substituting for 77 from (2-6), we obtain
IRTI o

where p— %ﬁ‘f} [(w 2) %ZVJF Pt ‘Z’: (B +22) +-2(2—A2) (3—22) B]
and 0— ﬁ[(sagug) (’ZVHg ‘Z’:) r24(5-2)]. o

From the value of d),/dr calculated by (4-6) for r =+ we can find [A,],-, ., by the relation

dA .
Wyeyiny = W)+ [ 2] A (4:8)

39-2
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We thus see that if A, and A, are known for 7 = 7/, they may be calculated for r = 7"+ Ar.
Since for r = a, ; = 1 and A, = A, we can calculate 1, and A, for all values of 7 by successive
application of the method outlined.

If the stored-energy function W has the simple form

W — (L, —3)+ Cah—3), (+9)
where C; and C, are constants, then from (2:6), 7'{ and 77, defined by
T =T,/2hC;, and T4 = T,/2hC,, (4-10)
are given by T7 = 2A3(A2—23) (14-aA3) } (411)
and Ty = A3(A3—23) (1+ar?),

where o = C,/C,.
Equation (4-6) may now be written

LD — SR (3= +alg 03+ 4]
a, & B (112)
dr A3(8A24-A2) (1+aA3) )

5. EXPERIMENTAL ARRANGEMENT

In order to compare the theoretical predictions of the previous sections with experimental
results, a circular sheet of vulcanized natural rubber, about 5in. in diameter and % in.
thick, was employed. The mix from which the rubber sheet was vulcanized had the following
composition in parts by weight: natural rubber (smoked sheet) 100, sulphur 2, zinc oxide 2,
accelerator (M.B.T.S.) 1, stearic acid 0-5 and nonox 0-5. Vulcanization was effected by
raising the temperature slowly to 141° C over a period of 30 min. and then maintaining the
temperature at 141° C for a further 30 min. A centrally placed hole about 1in. in diameter
was cut in the sheet. A number of diameters and concentric circles were drawn on the
surface of the sheet in ink, and sixteen circular holes, %in. in diameter, were bored in the
sheet near its circumference and at regular angular intervals.

The sheet was supported from hooks uniformly spaced on the circumference of a circle
by means of strings attached to it through these holes. It was arranged that the lengths of
these strings could be varied by means of small runners. By suitably adjusting the lengths
of these strings, the sheet was stretched in its own plane in such a way that the circles marked
on it remained circles and the diameters remained diameters and were not rotated. This was
not, of course, possible in the region near the periphery of the sheet where irregularities
were caused by the holes through which the strings were attached. However, these
irregularities became negligible within }in. of the holes measured radially on the sheet, and
measurements were made only on the central portion of the sheet where they could be
neglected.

The radii 7 of the circles and the radius « of the central hole were first measured with the
sheet in its undeformed state. Then, the sheet was stretched to various extents, in the manner
described, and in each state of stretch the radii p of the circles and the radius Aa of the central
hole were measured. All of these measurements were carried out with a travelling microscope
fitted with a vernier which could be read to 0-02 mm.
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6. EXPERIMENTAL AND THEORETICAL RESULTS

In figure 1, curves I to IV show the relations between p/r and r/a for A = 2-10, 3-18, 4-67
and 6-01 respectively, calculated in the manner described in §4, employing a value for a of
0-1. It is seen that the experimental results, denoted by circles, show good agreement with
the theoretical curves. In the case when A = 6-01, which will be discussed later, the
agreement is less close than in the other cases.

6-0

1-0 1-4 18 22 2:6 30
r/a
Ficure 1. Calculated plot of p/r against r/a for c= 0-1 compared with experimental
results for various values of A.

In figure 2, curves I, IT and IIT show the relations between p/r and r/a calculated for
A = 2:10 and values for « of 0, 0-1 and 0-2 respectively. Curve IV represents the asymptotic
formula (3-13). In figure 3, curves I to IV show the relations between p/r and r/a calculated
for 1 = 6-01 and a = 0, 0-08, 0-1 and 0-2 respectively. Curve V represents the asymptotic
formula (3-13). It is seen that the experimental results for this value of A agree well with
curve II for which « = 0-08. For all the values of A, the calculated results are not very
sensitive to the value of « chosen.

In carrying out the calculations, the value taken for Ar varied from 0-01 to 0-05, the larger
values being taken, in general, for the higher values of r/a where the variation of p/r with
r/a is less rapid. The absolute errors in the computation increase, of course, with r/a and at
r/a = 3 are estimated at less than 0-04 in the case when A = 6-01, where they are greatest.

In carrying out the calculations, it has been assumed that W has the Mooney form (4-9),
i.e. dW|dl, and dW/d1, are constants. In view of the results obtained in the preceding part
(VII), with a similar type of vulcanized rubber, indicating a dependence of dW/dI, on I,,, it
may at first sight appear strange thatsuch good agreement should be obtained between theory
and experiment by taking dW/dl, constant. This may to some extent be accounted for by the
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insensitivity of the results to the value of « employed in the calculation. Further, the values
of I; and 1, at each point of the deformed sheet, for a given value of 1 and «, can be calculated
by means of equations (2-4). Results of such calculations are shown in figures 4 and 5 for

L1 l I [ ] [ I I
1-0 1-4 1-8 2:2 26 3-0

rla

Ficure 2. Calculated plot of p/r against r/a for A= 2-10 and various values of «.
I, o= 0; II, a=0-1; III, «=0-2; IV, asymptotic formula.

6:0¢

5:0

4-0

plr

3-0

2-0
1-0 1-4 1-8 2:2 26 30

rla

Ficure 3. Calculated plot of p/r against r/a for A=6-01 and various values of « compared with
experimental results. I, @=0; II, a=0-08; III, a=0-1; IV, o =0-2; V, asymptotic formula.
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x = 0-1 and the values of A obtaining in the experiments. It is seen that I, is approximately
independent of 7/a for each value of A. Thus, even if formally dW/dI, depends to some extent
on I, its value on each curve will be substantially constant. The values of « for which the
calculated curves agree with the experimental results are approximately equal to the values
found in the foregoing paper for (dW/d1,)/(0W/d1,) at the appropriate values of L. The

40—

30

I 99

10

210
0 L 1 1 ! ! | ! ! n
1-0 14 18 2:2 26 30

rla

Ficure 4. Calculated radial variation of ; for « =0-1 and various values of
A indicated on the curves.

20— 601

P ——— 3'18
4 2-10
0 | | l | I I l | | ]
10 1-4 1-8 2-2 2:6 3:0
rla

Ficure 5. Calculated radial variation of Z, for «=0-1 and various values of A.

insensitivity of the shape of the p/r against r/a curves to dependence of dW/d1, on I, is the
more marked since Z, varies most rapidly with 7/a near the hole, and it has already been seen
that in this region the relation between p/r and r/a is determined chiefly by the asymptotic
formula (3-13) which is independent of the form of the stored-energy function. This probably
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accounts also for the fact that the agreement between theory and experiment is not vitiated
by the crystallization of the rubber in the immediate neighbourhood of the hole resulting
from its state of great extension. ‘

The slight fall in the value of «, for which agreement is obtained between the experimental
and theoretical results, occurring at the highest value considered of A—and therefore of
I,—isin qualitative agreement with the fall of dW/dI, with increase in /, indicated in part VII.
It should be borne in mind, however, that the results obtained for the lower values of 1
could be very nearly equally well fitted if a value of « of 0-08 were taken in carrying out the
calculations.

This work forms part of a programme of fundamental research undertaken by the Board
of the British Rubber Producers’ Research Association. Our thanks are due to Miss V. K.
Britten and to Miss X. Sweeting for carrying out the computations.
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